Balanced Codon Usage Optimizes Eukaryotic Translational Efficiency
نویسندگان
چکیده
Cellular efficiency in protein translation is an important fitness determinant in rapidly growing organisms. It is widely believed that synonymous codons are translated with unequal speeds and that translational efficiency is maximized by the exclusive use of rapidly translated codons. Here we estimate the in vivo translational speeds of all sense codons from the budding yeast Saccharomyces cerevisiae. Surprisingly, preferentially used codons are not translated faster than unpreferred ones. We hypothesize that this phenomenon is a result of codon usage in proportion to cognate tRNA concentrations, the optimal strategy in enhancing translational efficiency under tRNA shortage. Our predicted codon-tRNA balance is indeed observed from all model eukaryotes examined, and its impact on translational efficiency is further validated experimentally. Our study reveals a previously unsuspected mechanism by which unequal codon usage increases translational efficiency, demonstrates widespread natural selection for translational efficiency, and offers new strategies to improve synthetic biology.
منابع مشابه
Intragenic spatial patterns of codon usage bias in prokaryotic and eukaryotic genomes.
To study the roles of translational accuracy, translational efficiency, and the Hill-Robertson effect in codon usage bias, we studied the intragenic spatial distribution of synonymous codon usage bias in four prokaryotic (Escherichia coli, Bacillus subtilis, Sulfolobus tokodaii, and Thermotoga maritima) and two eukaryotic (Saccharomyces cerevisiae and Drosophila melanogaster) genomes. We genera...
متن کاملCodon usage is less optimized in eukaryotic gene segments encoding intrinsically disordered regions than in those encoding structural domains
Codon usage tends to be optimized in highly expressed genes. A plausible explanation for this phenomenon is that translational accuracy is increased in highly expressed genes with infrequent use of rare codons. Besides structural domains (SDs), eukaryotic proteins generally have intrinsically disordered regions (IDRs) that by themselves do not assume unique three-dimensional structures. As IDRs...
متن کاملQuantitative Effect of Suboptimal Codon Usage on Translational Efficiency of mRNA Encoding HIV-1 gag in Intact T Cells
BACKGROUND The sequences of wild-isolate strains of Human Immunodeficiency Virus-1 (HIV-1) are characterized by low GC content and suboptimal codon usage. Codon optimization of DNA vectors can enhance protein expression both by enhancing translational efficiency, and by altering RNA stability and export. Although gag codon optimization is widely used in DNA vectors and experimental vaccines, th...
متن کاملCodon-Driven Translational Efficiency Is Stable across Diverse Mammalian Cell States
Whether codon usage fine-tunes mRNA translation in mammals remains controversial, with recent papers suggesting that production of proteins in specific Gene Ontological (GO) pathways can be regulated by actively modifying the codon and anticodon pools in different cellular conditions. In this work, we compared the sequence content of genes in specific GO categories with the exonic genome backgr...
متن کاملThe signal for translational readthrough of a UGA codon in Sindbis virus RNA involves a single cytidine residue immediately downstream of the termination codon.
The nucleotide sequences surrounding termination codons influence the efficiency of translational readthrough. In this report, we examined the sequence requirement for efficient readthrough of the UGA codon in the Sindbis virus genomic RNA which regulates production of the putative viral RNA polymerase, nsP4. The UGA codon and its neighboring nucleotide sequences were subcloned into a heterolog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2012